ãšããžæ€åºã¢ã«ãŽãªãºã ãæ¢æ±ããã°ããŒãã«ãªå®äŸãšã倿§ãªå¿çšãžã®å®çšçãªæŽå¯ãæäŸããŸããã³ã³ãã¥ãŒã¿ããžã§ã³ã®åºç€ã
ãšããžæ€åºïŒã³ã³ãã¥ãŒã¿ããžã§ã³ã¢ã«ãŽãªãºã ã®ç§å¯ãè§£ãæãã
ãšããžæ€åºã¯ã³ã³ãã¥ãŒã¿ããžã§ã³ã®åºç€ã§ãããäžçäžã®å€ãã®ã¢ããªã±ãŒã·ã§ã³ã®åºç€ãšãªã£ãŠããŸãããã®ããã°èšäºã§ã¯ããšããžæ€åºã¢ã«ãŽãªãºã ã®å æ¬çãªæŠèŠãæäŸãããã®ååãå®è·µçãªå®è£ ãäžçäžã®å€æ§ãªã¢ããªã±ãŒã·ã§ã³ãæ¢æ±ããŸããå°ççãªå Žæã«é¢ä¿ãªããå°éå®¶ãæå¥œå®¶ã®ããã«ãæ ¹æ¬çãªæŠå¿µãæãäžããå®çšçãªæŽå¯ãæäŸããŸãã
ãšããžæ€åºãšã¯ïŒ
ã³ã³ãã¥ãŒã¿ããžã§ã³ã®åéã§ã¯ããšããžæ€åºãšã¯ãããžã¿ã«ç»åå ã§ç»åã®æãããæ¥æ¿ã«å€åããç¹ããŸãã¯ãã圢åŒçã«ã¯ãäžé£ç¶æ§ãååšããç¹ãç¹å®ããããã»ã¹ãæããŸãããããã®äžé£ç¶æ§ã¯ãå€ãã®å Žåããªããžã§ã¯ãéã®å¢çã衚é¢ç¹æ§ã®å€åããŸãã¯ç §æã®å€åã«å¯Ÿå¿ããŸãããããã®ãšããžãèŠã€ããããšã¯ããªããžã§ã¯ãèªèãç»åã»ã°ã¡ã³ããŒã·ã§ã³ãç¹åŸŽæœåºãªã©ã®é«ã¬ãã«ã®ç»åè§£æã¿ã¹ã¯ã«äžå¯æ¬ ã§ããåºæ¬çã«ããšããžæ€åºã¯ãåŠçããããŒã¿éãåæžããªãããéèŠãªæ§é æ å ±ãä¿æããããšã«ãããç»åãç°¡çŽ åããŸãã
ãšããžæ€åºãéèŠãªçç±
ãšããžæ€åºã¯ãå€ãã®ã³ã³ãã¥ãŒã¿ããžã§ã³ã¢ããªã±ãŒã·ã§ã³ã«ãããåºæ¬çãªã¹ããããšããŠæ©èœããŸãããã®éèŠæ§ã®äž»ãªçç±ã以äžã«ç€ºããŸãã
- ç¹åŸŽæœåºïŒãšããžã¯ç»åå ã®éèŠãªç¹åŸŽã衚ãããªããžã§ã¯ãã®èå¥ãåãã®è¿œè·¡ã圢ç¶ã®åæã«äœ¿çšã§ããŸãã
- ç»åã»ã°ã¡ã³ããŒã·ã§ã³ïŒãšããžã¯ãªããžã§ã¯ãã®å¢çãå®çŸ©ããç»åãè€æ°ã®é åã«åå²ãããç»åã»ã°ã¡ã³ããŒã·ã§ã³ãå¯èœã«ããŸããããã¯ãç»åã®ã³ã³ãã³ããçè§£ããã®ã«åœ¹ç«ã¡ãŸãã
- ãªããžã§ã¯ãèªèïŒãšããžãèå¥ããããšã«ãããã³ã³ãã¥ãŒã¿ããžã§ã³ã·ã¹ãã ã¯äž»èŠãªç¹åŸŽãæœåºããç»åããããªå ã®ãªããžã§ã¯ããèªèã§ããŸãã
- ç»åå§çž®ïŒãšããžæ€åºã䜿çšããŠãç»åã衚ãããã«å¿ èŠãªããŒã¿éãåæžããããå¹ççãªã¹ãã¬ãŒãžãšäŒéãå®çŸã§ããŸãã
- ãããã£ã¯ã¹ãšèªååïŒããããã¯ãšããžæ€åºã䜿çšããŠãç°å¢ãããã²ãŒããããªããžã§ã¯ããèå¥ãã補é ãããžã¹ãã£ã¯ã¹ãããã³ãã®ä»ã®ç£æ¥ã§ã¿ã¹ã¯ãå®è¡ããŸãã
äžè¬çãªãšããžæ€åºã¢ã«ãŽãªãºã
ç»åå ã®ãšããžãæ€åºããããã«ãããã€ãã®ã¢ã«ãŽãªãºã ãéçºãããŠããŸãããåã¢ã«ãŽãªãºã ã«ã¯é·æãšçæããããããŸããŸãªã¿ã€ãã®ç»åãã¢ããªã±ãŒã·ã§ã³ã«é©ããŠããŸããæãäžè¬çãªãã®ãããã€ãèŠãŠã¿ãŸãããã
1. Sobelãªãã¬ãŒã¿
Sobelãªãã¬ãŒã¿ã¯ãç»ååŒ·åºŠé¢æ°ã®åŸé ãè¿äŒŒããããã«äœ¿çšããã颿£åŸ®åãªãã¬ãŒã¿ã§ããåãã¯ã»ã«ã§ã®ç»å匷床ã®åŸé ãèšç®ããŸããåŸé ã¯ã匷床ãæã倧ããå€åããæ¹åã瀺ããåŸé ã®å€§ããã¯ãšããžã®åŒ·åºŠã瀺ããŸããSobelãªãã¬ãŒã¿ã¯ãæ°Žå¹³æ¹åã®åŸé ãèšç®ããããã®3x3ã®ç³ã¿èŸŒã¿ã«ãŒãã«ãšãåçŽæ¹åã®åŸé ãèšç®ããããã®å¥ã®ã«ãŒãã«ã®2ã€ã䜿çšããŸãããããã®åŸé ãçµã¿åããããšãå šäœçãªãšããžã®åŒ·åºŠãšæ¹åã®è¿äŒŒãåŸãããŸãã
äŸïŒãªã©ã³ãã®èŸ²å°ã®è¡æç»åãåæããããã«Sobelãªãã¬ãŒã¿ã䜿çšããããšãæ³åããŠã¿ãŠãã ããããªãã¬ãŒã¿ã¯ãçã®ãšããžã匷調衚瀺ããäœç©ã®ç£èŠãšåéæšå®ãæ¯æŽã§ããŸãã
2. Prewittãªãã¬ãŒã¿
Sobelãªãã¬ãŒã¿ãšåæ§ã«ãPrewittãªãã¬ãŒã¿ããšããžæ€åºã®ããã®é¢æ£åŸ®åãªãã¬ãŒã¿ã§ããæ°Žå¹³æ¹åãšåçŽæ¹åã®åŸé ãè¿äŒŒããããã«ã2ã€ã®3x3ã«ãŒãã«ã䜿çšããŸããèšç®çã«ã¯Sobelãªãã¬ãŒã¿ãããåçŽã§ãããPrewittãªãã¬ãŒã¿ã¯ãã€ãºã®åœ±é¿ãåãããããªã£ãŠããŸãããããã£ãŠãèšç®å¹çãæãéèŠãªå ŽåããŸãã¯ãã€ãºãå°ãªãå Žåã«åªå ãããŸãã
äŸïŒã€ã³ãã®èªåããã¥ã¡ã³ãã¹ãã£ã³ã·ã¹ãã ã§Prewittãªãã¬ãŒã¿ãå©çšããŠãçŽã®ããã¥ã¡ã³ãäžã®ããã¹ããç»åã®ãšããžãèå¥ã§ããŸãã
3. Cannyãšããžæ€åºåš
Cannyãšããžæ€åºåšã¯ãç»åå ã®åºç¯å²ã®ãšããžãæ€åºããããã«èšèšããã倿®µéã¢ã«ãŽãªãºã ã§ãããã®å ç¢æ§ãšãæ£ç¢ºã§æç¢ºãªãšããžãæäŸããèœåã«ãããæã广çã§åºã䜿çšãããŠãããšããžæ€åºã¢ã«ãŽãªãºã ã®1ã€ãšèŠãªãããŠããŸããCannyã¢ã«ãŽãªãºã ã«ã¯ã次ã®ã¹ããããå«ãŸããŸãã
- ãã€ãºãªãã¯ã·ã§ã³ïŒã¬ãŠã¹ãã£ã«ã¿ãŒãé©çšããŠç»åãã¹ã ãŒãºã«ãããã€ãºãäœæžããŸãã
- åŸé èšç®ïŒå°é¢æ°æŒç®åïŒäŸïŒSobelãŸãã¯PrewittïŒã䜿çšããŠãåŸé ã®å€§ãããšæ¹åãèšç®ããŸãã
- éæå€§æå¶ïŒåŸé æ¹åã«æ²¿ã£ãŠããŒã«ã«ã®æå€§å€ã§ã¯ãªããã¯ã»ã«å€ãæå¶ããããšã«ããããšããžã现ãããŸãã
- ãã¹ããªã·ã¹éŸå€åŠçïŒ2ã€ã®éŸå€ïŒé«ãšäœïŒã䜿çšããŠãã©ã®ãšããžã匷ãã匱ããã倿ããŸãã匷ããšããžã¯çŽæ¥å«ãŸãã匱ããšããžã¯åŒ·ããšããžã«æ¥ç¶ãããŠããå Žåã«ã®ã¿å«ãŸããŸãããã®ããã»ã¹ã¯ãé£ç¶ãããšããžãäœæãããã€ãºã®åœ±é¿ãäœæžããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒCannyãšããžæ€åºåšã¯ãäžçäžã®å»çã€ã¡ãŒãžã³ã°ã·ã¹ãã ã§äœ¿çšã§ããŸããããšãã°ãMRIã¹ãã£ã³ã§è «çã®å¢çç·ãåºåãã蚺æãšæ²»çèšç»ã«éèŠãªæ å ±ãæäŸããŸãã
4. Laplacian of GaussianïŒLoGïŒ
Laplacian of GaussianïŒLoGïŒãªãã¬ãŒã¿ã¯ãå¥ã®ãšããžæ€åºææ³ã§ããã¬ãŠã¹å¹³æ»åãã£ã«ã¿ãŒãšã©ãã©ã·ã¢ã³æŒç®åãçµã¿åããããã®ã§ãç»åã®2次å°é¢æ°ãèšç®ããŸããLoGã¡ãœããã¯ã现ãã詳现ã«ç¹ã«ææã§ãä»ã®ã¡ãœããã§ã¯ç°¡åã«æ€åºã§ããªããšããžãæ€åºã§ããŸããã©ãã©ã·ã¢ã³æŒç®åã¯ãå¹³æ»ååŸã®ç»åã®ãŒã亀差ãèŠã€ããŸãããã ããLoGã¯SobelãPrewittãããèšç®ã³ã¹ããé«ãããã€ãºã®åœ±é¿ãåãããããªã£ãŠããŸãã
äŸïŒLoGãªãã¬ãŒã¿ã¯ãäžçäžã®ç 究宀ã§çްèã®é¡åŸ®é¡ç»åãåæãã现èã®å¢çç·ãšå éšæ§é ãèå¥ããããã«äœ¿çšã§ããŸãã
å®è£ ãšå®éçãªèæ ®äºé
ãšããžæ€åºã¢ã«ãŽãªãºã ã¯ãéåžžãããŸããŸãªããã°ã©ãã³ã°èšèªãšã©ã€ãã©ãªã䜿çšããŠå®è£ ãããŸããå®è·µçãªå®è£ ãšèæ ®äºé ã以äžã«ç€ºããŸãã
1. ããã°ã©ãã³ã°èšèªãšã©ã€ãã©ãª
- PythonïŒPythonã¯ããã®åºç¯ãªã©ã€ãã©ãªã«ãããã³ã³ãã¥ãŒã¿ããžã§ã³ã®äžè¬çãªéžæè¢ã§ããOpenCVïŒcv2ïŒãscikit-imageãªã©ã®ã©ã€ãã©ãªã¯ããšããžæ€åºã¢ã«ãŽãªãºã ãå®è£ ããããã®ããã«äœ¿çšã§ãã颿°ãæäŸããŸãã
- C ++ïŒããã©ãŒãã³ã¹ãšå¹çãéèŠãªå Žåã¯ãC ++ããã䜿çšãããŸããOpenCVã¯C ++ããµããŒãããŠããŸãã
- MATLABïŒMATLABã¯ç»ååŠçãšåæã®ããã®åŒ·åãªããŒã«ã§ããããšããžæ€åºã®ããã®è±å¯ãªé¢æ°ã»ãããæäŸããŸãã
2. ãªãŒãã³ãœãŒã¹ã®äŸïŒOpenCVã䜿çšããPythonïŒ
OpenCVã䜿çšããŠCannyãšããžæ€åºåšã䜿çšããŠãšããžãæ€åºããç°¡åãªPythonã®äŸã次ã«ç€ºããŸãã
import cv2
import numpy as np
# Load the image
img = cv2.imread('your_image.jpg', cv2.IMREAD_GRAYSCALE)
# Apply the Canny edge detector
edges = cv2.Canny(img, threshold1=100, threshold2=200)
# Display the image
cv2.imshow('Original Image', img)
cv2.imshow('Canny Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
ãã®ã³ãŒãã¹ããããã¯ãç»åãããŒãããïŒãŸã ãªãå Žåã¯ïŒã°ã¬ãŒã¹ã±ãŒã«ã«å€æããæå®ããããããå€ã䜿çšããŠCannyãšããžæ€åºåšãé©çšããæ¹æ³ã瀺ããŠããŸããçµæãšããŠãæ€åºããããšããžãæã€ç»åã衚瀺ãããŸãã
3. ãã©ã¡ãŒã¿ãšãã¥ãŒãã³ã°
ãšããžæ€åºã¢ã«ãŽãªãºã ã®ããã©ãŒãã³ã¹ã¯ãéžæããããã©ã¡ãŒã¿ã«ãã£ãŠç°ãªããŸããããšãã°ãCannyãšããžæ€åºåšã®ãããå€ïŒäœãšé«ïŒã¯ãçµæã«å€§ããªåœ±é¿ãäžããŸããäœããããå€ã¯ããå€ãã®ãšããžïŒãã€ãºãå«ãïŒãæ€åºããé«ããããå€ã¯ããå°ãªããšããžãæ€åºããŸãããéèŠãªè©³çްãèŠéãå¯èœæ§ããããŸãããã£ã«ã¿ãªã³ã°ãšå¹³æ»åã®ã«ãŒãã«ãµã€ãºãªã©ãä»ã®ãã©ã¡ãŒã¿ãçµæã«åœ±é¿ãäžããŸããæé©ãªãã©ã¡ãŒã¿ã¯ãç¹å®ã®ç»åã®ç¹æ§ãšã¢ããªã±ãŒã·ã§ã³ã®èŠä»¶ã«ãã£ãŠç°ãªããããæ éãªãã¥ãŒãã³ã°ãå¿ èŠã«ãªãããšããããããŸãã
4. ç»åã®ååŠç
ååŠçã¹ãããã¯ããšããžæ€åºã¢ã«ãŽãªãºã ã®å¹æãé«ããããšããããããŸãããã€ãºãªãã¯ã·ã§ã³ãã³ã³ãã©ã¹ã調æŽãç»åå¹³æ»åãªã©ã®ææ³ã¯ãçµæãå€§å¹ ã«æ¹åã§ããŸããååŠçæ¹æ³ã®éžæã¯ãå ¥åç»åã®ç¹æ§ã«ãã£ãŠç°ãªããŸããããšãã°ãç»åã«ãã€ãºãå€ãå Žåã¯ããšããžæ€åºã®åã«ã¬ãŠã¹ãã£ã«ã¿ãŒãé©çšããã®ãäžè¬çãªæ¹æ³ã§ãã
ãšããžæ€åºã®ã¢ããªã±ãŒã·ã§ã³
ãšããžæ€åºã«ã¯ãããŸããŸãªæ¥çããã³åéã§å¹ åºãã¢ããªã±ãŒã·ã§ã³ããããŸããããã€ãã®äŸã次ã«ç€ºããŸãã
- èªåé転è»ïŒå®å šãªããã²ãŒã·ã§ã³ãå¯èœã«ããããã«ãéè·¯æšç€ºãé害ç©ãäº€éæšèãæ€åºããŸãããšãŒããããåç±³ãã¢ãžã¢ã®èªåé転è»ã®ãããžã§ã¯ãã®äŸãæ€èšããŠãã ããã
- å»çã€ã¡ãŒãžã³ã°ïŒèšºæãšæ²»çã®ããã«ãèåšãè «çããã®ä»ã®è§£ååŠçæ§é ã®å¢çãèå¥ããŸããããã¯ããã©ãžã«ã®ç é¢ããæ¥æ¬ã®èšºçæãŸã§ãäžçäžã§é©çšãããŸãã
- ãããã£ã¯ã¹ïŒããããããªããžã§ã¯ããèªèããç°å¢ãããã²ãŒããã補é ãããžã¹ãã£ã¯ã¹ãããã³èŸ²æ¥ã§ã¿ã¹ã¯ãå®è¡ã§ããããã«ããŸãã
- å質管çïŒè£œé ããã補åã«ãäºè£ãéšåã®æ¬ èœãªã©ã®æ¬ é¥ããªããæ€æ»ããŸããããã¯ãããŸããŸãªåœã®çç£ã©ã€ã³ã«é©çšãããŸãã
- ã»ãã¥ãªãã£ãšç£èŠïŒç°åžžãªåããæ€åºããäŸµå ¥è ãèå¥ããã»ãã¥ãªãã£ã«ã¡ã©ã®ã·ãŒã³ãåæããŸããã·ã¹ãã ã¯ãç±³åœããåã¢ããªã«ãŸã§ãäžçäžã«å±éãããŠããŸãã
- ããã¥ã¡ã³ãåæïŒã¹ãã£ã³ãããããã¥ã¡ã³ãããããã¹ããç»åãæœåºããŸããããã¯ãäžçäžã®å³æžé€šãæ³åå®åãããã³ã¢ãŒã«ã€ãã§éèŠã§ãã
- çäœèªèšŒïŒé¡æ€åºãšèªèã¯åºã䜿çšãããŠããããšããžæ€åºã«äŸåããŠããŸããããã«ã¯ããªãŒã¹ãã©ãªã¢ããã«ãããŸã§ã®èå¥ã·ã¹ãã ã®ã¢ããªã±ãŒã·ã§ã³ãå«ãŸããŸãã
課é¡ãšå¶éäºé
ãšããžæ€åºã¢ã«ãŽãªãºã ã¯åŒ·åã§ãããããã€ãã®èª²é¡ãšå¶éäºé ã«ãçŽé¢ããŠããŸãã
- ãã€ãºã«å¯ŸããæåºŠïŒç»åã«ã¯ãã€ãºãå«ãŸããŠããããšãå€ãããšããžæ€åºã劚ãã誀ã£ããšããžãŸãã¯äžæ£ç¢ºãªçµæã«ã€ãªããå¯èœæ§ããããŸãã
- å€åããç §æïŒç §ææ¡ä»¶ã®å€åã¯ãç»åã®æããã«åœ±é¿ãäžãããšããžãæ£ç¢ºã«æ€åºããããšãå°é£ã«ããå¯èœæ§ããããŸãã
- è€éãªã·ãŒã³ïŒå€ãã®ãªããžã§ã¯ããšè€éãªè©³çްãå«ãè€éãªã·ãŒã³ã¯ããšããžæ€åºã¢ã«ãŽãªãºã ã«èª²é¡ãããããå¯èœæ§ããããŸãã
- èšç®ã³ã¹ãïŒäžéšã®ã¢ã«ãŽãªãºã ã¯ãç¹ã«å€§ããªç»åããªã¢ã«ã¿ã€ã ã¢ããªã±ãŒã·ã§ã³ã§ã¯ãèšç®ã³ã¹ããé«ããªãå¯èœæ§ããããŸãã
- ãã©ã¡ãŒã¿ã®ãã¥ãŒãã³ã°ïŒç¹å®ã®ç»åãŸãã¯ã¢ããªã±ãŒã·ã§ã³ã«æé©ãªãã©ã¡ãŒã¿ãèŠã€ããã«ã¯ãæéãããããå®éšãå¿ èŠã«ãªãå ŽåããããŸãã
ãšããžæ€åºã®å°æ¥ã®ãã¬ã³ã
ãšããžæ€åºã®åéã¯çµ¶ããé²åããŠããŸããããã€ãã®æ°ãããã¬ã³ããšç ç©¶åéã«ã¯ã次ã®ãã®ããããŸãã
- 深局åŠç¿ïŒæ·±å±€åŠç¿ã¢ãã«ãç¹ã«ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒãããšããžæ€åºã«äœ¿çšãããŠããŸããCNNã¯è€éãªç¹åŸŽãåŠç¿ããããŸããŸãªç»åã®ç¹æ§ã«èªåçã«é©å¿ã§ããããã粟床ãšå ç¢æ§ãåäžããŸãã
- ãªã¢ã«ã¿ã€ã ãšããžæ€åºïŒãªã¢ã«ã¿ã€ã ã§ãšããžãæ€åºã§ããã¢ã«ãŽãªãºã ãéçºããèªåé転è»ããããã£ã¯ã¹ããããªç£èŠã§ã®ã¢ããªã±ãŒã·ã§ã³ãå¯èœã«ããŸãã
- 3Dãšããžæ€åºïŒLiDARã»ã³ãµãŒããã®ç¹çŸ€ãªã©ã®3DããŒã¿ã«ãšããžæ€åºæè¡ãæ¡åŒµããŠã3Dç°å¢ãåæããŸããããã¯ã建ç¯èŠèŠåãç£æ¥æ€æ»ãªã©ã®ããŸããŸãªåéã§ã®ã¢ããªã±ãŒã·ã§ã³ã§ãŸããŸãéèŠã«ãªã£ãŠããŸãã
- ä»ã®ããžã§ã³ã¿ã¹ã¯ãšã®çµ±åïŒãšããžæ€åºãããªããžã§ã¯ãèªèãç»åã»ã°ã¡ã³ããŒã·ã§ã³ãªã©ã®ä»ã®ã³ã³ãã¥ãŒã¿ããžã§ã³ã¿ã¹ã¯ãšçµã¿åãããŠãããå æ¬çãªç»åçè§£ã·ã¹ãã ãäœæããŸãã
- ãšããžæ€åºã®ããã®èª¬æå¯èœãªAIïŒXAIïŒïŒAIã®å°é ã«äŒŽããç¹ã«æ·±å±€åŠç¿ã«åºã¥ããšããžæ€åºã¢ã«ãŽãªãºã ã®æææ±ºå®ããã»ã¹ãçè§£ããå¿ èŠããããŸããXAIã¡ãœããã¯ããããã®ã¢ãã«ã®éææ§ãšè§£éå¯èœæ§ãåäžãããããšãç®æããŠããŸãã
çµè«
ãšããžæ€åºã¯ãããŸããŸãªæ¥çããã³å°åã§å¹ åºãã¢ããªã±ãŒã·ã§ã³ãæã€ã³ã³ãã¥ãŒã¿ããžã§ã³ã®åºæ¬çãªããã»ã¹ã§ããSobelãPrewittãCannyãLoGãªã©ã®ããŸããŸãªãšããžæ€åºã¢ã«ãŽãªãºã ã®èåŸã«ããååãçè§£ããããšã§ãå°éå®¶ãåŠçãé«åºŠãªç»ååæã®èª²é¡ã«åãçµãããã®ç¢ºåºããåºç€ãæäŸãããŸãããã€ãã®éè·¯ãããã²ãŒãããèªåé転è»ãããäžåœã®ç é¢ã§ç æ°ã蚺æããå»çå°éå®¶ãŸã§ããšããžæ€åºã¢ã«ãŽãªãºã ã¯éèŠãªåœ¹å²ãæãããŠããŸãããã¯ãããžãŒã®é²æ©ã«äŒŽãããã®åéã§ãããªãéçºãæåŸ ã§ããããæ£ç¢ºã§å¹ççã§å ç¢ãªãšããžæ€åºæè¡ã«ã€ãªãããŸãããšããžæ€åºã®ãœãªã¥ãŒã·ã§ã³ãç¶ç¶çã«ç ç©¶ããã³éçºããããšã«ãããã³ã³ãã¥ãŒã¿ããžã§ã³ã·ã¹ãã ãåšå²ã®äžçãããããçè§£ããçžäºäœçšã§ããæªæ¥ã«è²¢ç®ããŸããããã¯ãäžçäžã®ãã¹ãŠã®äººã ã«åœ±é¿ãäžããŸããããã«ãOpenCVã®ãããªã©ã€ãã©ãªã®ã¢ã¯ã»ã·ããªãã£ã𿷱局åŠç¿ã®é²æ©ã¯ãæ°ããã¢ããªã±ãŒã·ã§ã³ãžã®éãåãéããéçºè ãç ç©¶è ããããŸã§ä»¥äžã«å€ãã®ããšãéæã§ããããã«ããŠããŸãã